Glucose stimulates protein synthesis in skeletal muscle of neonatal pigs through an AMPK- and mTOR-independent process.
نویسندگان
چکیده
Skeletal muscle protein synthesis is elevated in neonates in part due to an enhanced response to the rise in insulin and amino acids after eating. In vitro studies suggest that glucose plays a role in protein synthesis regulation. To determine whether glucose, independently of insulin and amino acids, is involved in the postprandial rise in skeletal muscle protein synthesis, pancreatic-substrate clamps were performed in neonatal pigs. Insulin secretion was inhibited with somatostatin and insulin was infused to reproduce fasting or fed levels, while glucose and amino acids were clamped at fasting or fed levels. Fractional protein synthesis rates and translational control mechanisms were examined. Raising glucose alone increased protein synthesis in fast-twitch glycolytic muscles but not in other tissues. The response in muscle was associated with increased phosphorylation of protein kinase B (PKB) and enhanced formation of the active eIF4E.eIF4G complex but no change in phosphorylation of AMP-activated protein kinase (AMPK), tuberous sclerosis complex 2 (TSC2), mammalian target of rapamycin (mTOR), 4E-binding protein-1 (4E-BP1), ribosomal protein S6 kinase (S6K1), or eukaryotic elongation factor 2 (eEF2). Raising glucose, insulin, and amino acids increased protein synthesis in most tissues. The response in muscle was associated with phosphorylation of PKB, mTOR, S6K1, and 4E-BP1 and enhanced eIF4E.eIF4G formation. The results suggest that the postprandial rise in glucose, independently of insulin and amino acids, stimulates protein synthesis in neonates, and this response is specific to fast-twitch glycolytic muscle and occurs by AMPK- and mTOR-independent pathways.
منابع مشابه
Feeding stimulates protein synthesis in muscle and liver of neonatal pigs through an mTOR-dependent process.
Protein synthesis is repressed in both skeletal muscle and liver after a short-term fast and is rapidly stimulated in response to feeding. Previous studies in rats and pigs have shown that the feeding-induced stimulation of protein synthesis is associated with activation of the 70-kDa ribosomal protein S6 kinase (S6K1) as well as enhanced binding of eukaryotic initiation factor eIF4E to eIF4G t...
متن کاملLeucine stimulates protein synthesis in skeletal muscle of neonatal pigs by enhancing mTORC1 activation.
Skeletal muscle in the neonate grows at a rapid rate due in part to an enhanced sensitivity to the postprandial rise in amino acids, particularly leucine. To elucidate the molecular mechanism by which leucine stimulates protein synthesis in neonatal muscle, overnight-fasted 7-day-old piglets were treated with rapamycin [an inhibitor of mammalian target of rapamycin (mTOR) complex (mTORC)1] for ...
متن کاملThe effect of 8 weeks endurance exercise on the content of total and phosphorylated AKT1, mTOR, P70S6K1 and 4E-BP1 in skeletal muscle FHL of rats with type 2 diabetes
Introduction: The mTOR pathway in skeletal muscle plays a very important role in the protein synthesis process, which plays a very important role in proteins. The role of endurance exercise has not yet been studied in this important pathway in protein synthesis in people with type 2 diabetes. The purpose of the present study was to investigate the effect of 8 weeks endurance training on the con...
متن کاملInsulin stimulates muscle protein synthesis in neonates during endotoxemia despite repression of translation initiation.
Skeletal muscle protein synthesis is reduced in neonatal pigs in response to endotoxemia. To examine the role of insulin in this response, neonatal pigs were infused with endotoxin (LPS, 0 and 10 mug.kg(-1).h(-1)), whereas glucose and amino acids were maintained at fasting levels and insulin was clamped at fasting or fed (2 or 10 muU/ml) levels. Fractional rates of protein synthesis and transla...
متن کاملتأثیر 4 هفته تمرین تناوبی با شدت بالا بر محتوای پروتئینهای AKT1، mTOR، P70S6K1 و 4E-BP1 در عضله اسکلتی نعلی موشهای صحرایی مبتلا به دیابت نوع 2 یک مطالعه تجربی
Background and Objectives: The most important mechanism of protein synthesis muscle is the mTORC1 pathway in skeletal muscle in which very important proteins play role. Diabetes disturbs this pathway through generating resistance to insulin. The effect of high intensity interval training (HIIT) has not been studied yet on this important pathway in type 2 diabetes. Therefore, the purpose of the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Endocrinology and metabolism
دوره 293 2 شماره
صفحات -
تاریخ انتشار 2007